Solve each problem.

1) Two contractors are bidding on building a house. Contractor A's price is represented in the table below. Contractor B's price is represented by an equation, with y representing the total price and x representing the square feet of the house.

Contractor A	
Square Feet	Total Price (\$)
1978	225,492
1926	219,564

Contractor B
$y=115 x$

Find the total price you'd get from building a $1,488 \mathrm{sq} / \mathrm{ft}$ house from the cheapest contractor.
2) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Company A	
Total Kilowatt- Hours	Total Cost $(\$)$
1264	126.40
1417	141.70

Company B

$y=0.14 x$

Find the total cost in dollars of buying 1,248 kilowatt hours of electricity from the more expensive company.
3) Two junk yards offered money for scrap metal. Junk Yard A's price is represented in the table below. Junk Yard B's price is represented by an equation, with y representing the total price and x representing the pounds of metal recycled.

Junk Yard A	
Pounds	Total Price (\$)
1406	$2,713.58$
1462	$2,821.66$

Junk Yard B

$\mathrm{y}=1.90 \mathrm{x}$

What is the difference in the price per pound between junk yard A and junk yard B?

Solve each problem.

1) Two contractors are bidding on building a house. Contractor A's price is represented in the table below. Contractor B's price is represented by an equation, with y representing the total price and x representing the square feet of the house.

Square Feet	Total Price $\mathbf{(\$)}$
1978	225,492
1926	219,564
$\mathrm{y}=114 \mathrm{x}$	

Contractor B
$y=115 x$

Find the total price you'd get from building a $1,488 \mathrm{sq} / \mathrm{ft}$ house from the cheapest contractor.
2) Two companies are selling electricity by Kilo-watt hour. The cost of electricity for Company A is represented in the table below, while the cost for Company B is represented by an equation, with y representing the total cost in dollars for x kilowatt hours.

Total Kilowatt- Hours	Total Cost $\mathbf{(\$)}$
1264	126.40
1417	141.70
$\mathrm{y}=0.10 \mathrm{x}$	

Company B

$y=0.14 x$

$$
y=0.10 x
$$

Find the total cost in dollars of buying 1,248 kilowatt hours of electricity from the more expensive company.
3) Two junk yards offered money for scrap metal. Junk Yard A's price is represented in the table below. Junk Yard B's price is represented by an equation, with y representing the total price and x representing the pounds of metal recycled.

Junk Yard A		$\begin{gathered} \text { Junk Yard B } \\ \mathrm{y}=1.90 \mathrm{x} \end{gathered}$
Pounds	Total Price (\$)	
1406	2,713.58	
1462	2,821.66	
$\mathrm{y}=1.93 \mathrm{x}$		

What is the difference in the price per pound between junk yard A and junk yard B?

